Putative Zinc Finger Protein Binding Sites Are Over-Represented in the Boundaries of Methylation-Resistant CpG Islands in the Human Genome
نویسندگان
چکیده
BACKGROUND Majority of CpG dinucleotides in mammalian genomes tend to undergo DNA methylation, but most CpG islands are resistant to such epigenetic modification. Understanding about mechanisms that may lead to the methylation resistance of CpG islands is still very poor. METHODOLOGY/PRINCIPAL FINDINGS Using the genome-scale in vivo DNA methylation data from human brain, we investigated the flanking sequence features of methylation-resistant CpG islands, and discovered that there are several over-represented putative Transcription Factor Binding Sites (TFBSs) in methylation-resistant CpG islands, and a specific group of zinc finger protein binding sites are over-represented in boundary regions ( approximately 400 bp) flanking such CpG islands. About 77% of the over-represented putative TFBSs are conserved among human, mouse and rat. We also observed the enrichment of 4 histone methylations in methylation-resistant CpG islands or their boundaries. CONCLUSIONS/SIGNIFICANCE Our results suggest a possible mechanism that certain putative zinc finger protein binding sites over-represented in the boundary regions of the methylation-resistant CpG islands may block the spreading of methylation into these islands, and those TFBSs over-represented within the islands may both reinforce the methylation blocking and promote transcription. Some histone modifications may also enhance the immunity of the CpG islands against DNA methylation by augmenting these TFs' binding. We speculate that the dynamical equilibrium between methylation spreading and blocking is likely to be responsible for the establishment and maintenance of the relatively stable DNA methylation pattern in human somatic cells.
منابع مشابه
Predicting CpG Islands and DNA Methlation in the Cow Genome Using DNA Microarray Meta-Analysis and Genome Wide Scanning
DNA methylation is a type of epigenetic changes that directly affects DNA. In mammals, DNA methylation is essential for fetal development and stem cell differentiation and this phenomenon essentially occurs within the CpG islands. In this study, two methods were used to study the DNA methylation profile of cow genome. In the first method, the DNA methylation profile of the differentially expres...
متن کاملHistone methylation marks play important roles in predicting the methylation status of CpG islands.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the...
متن کاملZF-CxxC domain-containing proteins, CpG islands and the chromatin connection
Vertebrate DNA can be chemically modified by methylation of the 5 position of the cytosine base in the context of CpG dinucleotides. This modification creates a binding site for MBD (methyl-CpG-binding domain) proteins which target chromatin-modifying activities that are thought to contribute to transcriptional repression and maintain heterochromatic regions of the genome. In contrast with DNA ...
متن کاملVezf1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt3b.
The zinc finger protein vascular endothelial zinc finger 1 (Vezf1) has been implicated in the development of the blood vascular and lymphatic system in mice, and has been characterized as a transcriptional activator in some systems. The chicken homolog, BGP1, has binding sites in the beta-globin locus, including the upstream insulator element. We report that in a mouse embryonic stem cell line ...
متن کاملAnalyses of methylation status of CpG islands in promoters of miR-9 genes family in human gastric adenocarcinoma
In the recent years deregulation for microRNAs expression pattern have emerged as a possible molecular factor for carcinogenesis. It has been reported that the expression of miR-9 was down-regulated in human gastric adenocarcinoma. To figure out the molecular mechanism of this down regulation, the methylation status in promoters of miR-9 family loci were compared in the human gastric adenocarci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007